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Reichenbach’s common cause principle claims that if there is correlation between
two events and none of them is directly causally influenced by the other, then
there must exist a third event that can, as a common cause, account for the
correlation. The EPR-Bell paradox consists in the problem that we observe
correlations between spatially separated events in the EPR experiments which
do not admit common-cause-type explanation, and it must therefore be concluded
that, contrary to relativity theory, in the realm of quantum physics there exists
action at a distance, or at least superluminal causal propagation is possible; that
is, either relativity theory or Reichenbach’s common cause principle fails. By
means of closer analyses of the concept of common cause and a more precise
reformulation of the EPR experimental scenario, I sharpen the conclusion we
can draw from the violation of Bell’s inequalities.

1. REICHENBACH’S DEFINITION OF COMMON CAUSE

Two events are correlated if the following holds for their probabilities:

Dp(AB) 5 p(AB) 2 p(A)p(B) Þ 0

Seeing correlation between two events A and B, one can imagine two
kinds of explanation: (1) the occurrence of one event is directly influenced
by the occurrence of the other (so called direct correlation), or (2) the
correlation is explained by the existence of a third event Z, a common cause,
which is directly correlated to both A and B. In this case we say that the
correlation is a common cause correlation.

Following Reichenbach [1], we give the following definition for a com-
mon cause:
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Let A and B be two correlated events, Dp(AB) Þ 0. An event Z is called
common cause if

Z Þ A,B

if Z , A or Z . A, then p(Z ) Þ p(A) (1)

if Z , B or Z . B, then p(Z ) Þ p(B) (2)

p(AB.Z ) 5 p(A.Z )p(B.Z ) (3)

p(AB.Z) 5 p(A.Z)p(B.Z) (4)

Hp(AZ ) . p(A)p(Z )
p(BZ ) . p(B)p(Z )J or Hp(AZ ) , p(A)p(Z )

p(BZ ) , p(B)p(Z )J if D(AB) . 0

(5)

Hp(AZ ) . p(A)p(Z )
p(BZ ) , p(B)p(Z )J or Hp(AZ ) , p(A)p(Z )

p(BZ ) . p(B)p(Z )J if D(AB) , 0

Only the so-called “screening off” properties (3) and (4) need some explana-
tion: If we restrict the statistical ensemble to the subensemble in which the
occurrence (or nonoccurrence, respectively) of the common cause event is
fixed, then the correlation disappears.

2. COMMON CAUSE PRINCIPLE

Reichenbach’s Common Cause Principle (CCP). If two events are corre-
lated and one can exclude the possibility of direct causal relationship between
them, then there must exist an event satisfying all the conditions required in
the above definition of common cause.

In general, the original event algebra does not contain a common cause.
This is not required by the CCP, but it requires the existence of a common
cause event in reality. However, if for each correlation there is a common
cause in reality, then we may with good reason assume that the original event
algebra is extendable in such a way that all of these common causes are
contained in the extension. Otherwise, we would find ourselves in an
extremely counterintuitive situation as observing events in the world, about
which we would not be able to speak with the logical connectives of every-
day language.

It would be an obvious strategy to prove the invalidity of the CCP if
someone showed correlated events described by a probabilistic model which
were not extendable with common causes for all correlations. This is typically
the strategy of the EPR-Bell theorem aimed to prove the failure of the CCP
in quantum mechanics.
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3. EPR-ASPECT EXPERIMENT

The four detectors in Fig. 1 detect the spin-up events in the spin-
component measurements in directions a, a8 and b, b8. There are random
switches (or independent agents) choosing between the different possible
measurements on both sides. Let p(a), p(a8) and p(b), p(b8) be arbitrary
probabilities with which the different measurements are chosen. We can
experience the following events in the experiment:

A: “the spin of the left particle is up in direction a” detector fires

A8: “the spin of the left particle is up in direction a8” detector fires

B: “the spin of the left particle is up in direction b” detector fires

B8: “the spin of the left particle is up in direction a8” detector fires

a: the left switch chooses the a-measurement

a8: the left switch chooses the a8 measurement

b: the right switch chooses the b-measurement

b8: the right switch chooses the b8-measurement

Let a, a8, b, b8 be coplanar vectors such that \(a, a8) 5 \(a8, b8) 5
\(a, b8) 5 1208 and \(a8, b) 5 0. We observe the following relative
frequencies in the experiment:

p(A) 5 1–2 p(a), p(B) 5 1–2 p(b)

p(A8) 5 1–2 p(a8), p(B8) 5 1–2 p(b8)
(6)

p(AB) 5 3–8 p(a)p(b), p(A8B) 5 0

p(AB8) 5 3–8 p(a)p(b8), p(A8B8) 5 3–8 p(a8)p(b8)

There are correlations among the outcomes of the measurements per-
formed on the left and the right particles:

Fig. 1. The Aspect experiment with spin-1/2 particles.
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Dp(AB), Dp(AB8), Dp(A8B), Dp(A8B8) Þ 0 (7)

The usual interpretation of the experimental data in (6) is the following: The
conditional probability p(A.a) 5

def
p(Aa)/p(a), for example, is regarded as the

quantum mechanical probability tr(ŴÂ ) of a particular quantum event repre-
sented by projector Â. (Ŵ denotes the state operator of the system.) In this
sense, the data in (6) are in accordance with the quantum mechanical predic-
tion. Let us denote these probabilities as follows:

q(A) 5 p(A.a) 5 1–2 , q(AB) 5 p(AB.ab) 5 3–8

q(A8) 5 p(A8.a8) 5 1–2 , q(A8B) 5 p(A8B.a8b) 5 0
(8)

q(B) 5 p(B.b) 5 1–2 , q(AB8) 5 p(AB8.ab8) 5 3–8

q(B8) 5 p(B8.b8) 5 1–2 , q(A8B8) 5 p(A8B8.a8b8) 5 3–8

The correlations in (7) can be expressed by using these quantum probabili-
ties, too:

Dq(AB) 5 Dq(AB8) 5 Dq(A8B8) 5 1–8 (9)
Dq(A8B) 5 21–4

The question, as it is formulated everywhere in the literature of the EPR-
Bell paradox, is this:

• Does a common cause for the correlations in (9) exist?

And the standard answer is: no!

4. WHY IS THIS QUESTION WRONG?

1. Small Mistake. It is tacitly assumed that all correlations encountered
in the EPR experiment have the same common cause explanation. From the
nonexistence of common common cause, however, it does not follow that
CCP fails! One can easily show classical physical examples with correlations
for which there is no common common cause, but which admit separate
common causes.

2. Bad mistake. There are no events—and in principle, there cannot
exist events in reality, the relative frequencies of which would be equal to
“quantum probabilities” q(A), q(A8), q(B), . . . . In other words, the question
we asked is a question about the existence of common cause for correlations
among nonexisting events.

Argument. I don’t know what a “quantum event” is, the probability of
which is a number like
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q(A) 5 tr(ŴÂ )

but anyone who knows should be able to tell a laboratory assistant when
such an “event” occurs. According to the instruction the assistant makes a
record like that in Table I.

Now, the relative frequencies are

v(A) 5
NA

100000
, v(A8) 5

NA

100000
,

v(B) 5
NS

100000
, . . .

In other words, the relative frequencies read off from the record are weighted
averages of the classical truth-values:

›
v 5 (εP(0,1)4 lε

›
u ε, i.e.,

›
v P C(4, S).

Consequently, numbers v(A), v(A8), v(B), v(B8), v(AB), v(AB8), v(A8B),
v(A8B8) must satisfy the Bell–Clauser–Horne inequalities.

But q(A), q(A8), q(B), q(B8), q(AB), q(AB8), q(A8B), q(A8B8) do not
satisfy the Bell–Clauser–Horne inequalities! (We used here Pitowsky’s for-
malism [2], a brief account of which is given in the Appendix.) So, what the
violation of the bell inequalities indicates is not that correlations (9) do not
have common cause, but rather that there are no events which would have
such correlations.

Table I

Run A A8 B B8 AB AB8 A8B A8B8

1 u u u
2 u
3 u u u
4 u u u
5 u
6 u
7 u u u

99995 u
99996 u u u
99997 u u u
99998 u
99999 u

100000 u u u
N NA NA8 NB NB8 NAB NAB8 NA8B NA8B8
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5. THE CORRECTED QUESTION

Stipulations

1. We restrict ourselves to the observed physical events A, A8, B, B8,
a, a8, b, b8.

2. For example, the left particle emitted from the source is subjected
to one of the measurement procedures a or a8. The outcome of the
measurement is affected by the preceding measurement procedure,
and this effect shows regularities described by quantum mechanics.

3. Because of the spatial separation, the measurement outcome on one
side must be independent of the measurement operation performed
on the other side.

4. The choices of the measurements are free, therefore the left and
right measurement selections are statistically independent.

5. We can speak about correlations between events on the left- and
right-hand sides only in case of the outcomes of the measurements.
Assume there is an event that is a common cause for such a
correlation.

6. The probabilities of the measurement choices p(a), p(a8), p(b), p(b8),
are entirely arbitrary. Consequently, one can require that the common
cause event be a common cause independent of the concrete values
of probabilities p(a), p(a8), p(b), p(b8).

7. Also, because the choices of the measurements are free in the
sense that there is no mysterious conspiracy between the things that
determines the choices of the measurements and those that determine
the outcomes, one can assume that the measurement choices are
independent of the common cause.

8. For sake of simplicity, we can finally assume that one of the measure-
ments is surely performed on the both sides.

These findings are partly read off from the empirical data or they are straight-
forward consequences of the prohibition of superluminal causation.

The above requirements can be expressed in the following formulas:

New:

p(X ) 5 p(X.x)p(x) 5 tr(ŴX̂ )p(x)
(10)

p(Y ) 5 p(Y.y)p( y) 5 tr(ŴŶ )p( y)

p(xy) 5 p(x)p( y) (11)

p(Xy) 5 p(X )p( y)
(12)

p(xY ) 5 p(x)p(Y )
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p(xZXY) 5 p(x)p(ZXY)
(13)

p( yZXY) 5 p( y)p(ZXY)

p(a) 1 p(a8) 5 p(b) 1 p(b8) 5 1 (14)

ZXY Þ X, Y (15)

Reichenbach’s:

if Z , X or Z . X, then p(ZXY) Þ p(X )
(16)

if Z , Y or Z . Y, then p(ZXY) Þ p(Y )

p(XY.ZXY) 5 p(X.ZXY) p(Y.ZXY) (17)

p(XY.ZXY) 5 p(X.ZXY) p(Y.ZXY) (18)

Hp(XZXY) . p(X )p(ZXY)
p(YZXY) . p(Y )p(ZXY)J or Hp(XZXY) , p(X )p(ZXY)

p(YZXY) , p(Y )p(ZXY)J
if D(XY ) . 0 (19)

Hp(XZXY) . p(X )p(ZXY)
p(YZXY) , p(Y )p(ZXY)J or Hp(XZXY) , p(X )p(ZXY)

p(YZXY) . p(Y )p(ZXY)J
if D(XY ) , 0

Here ZXY denotes the common cause for correlation D(XY ) Þ 0, and X 5 A,
A8; Y 5 B, B8; x 5 a, a8; y 5 b, b8.

Now, we correct the question about common cause in the following way:

• Do common causes for the (real) correlations in (7) exist satisfying
conditions (10)–(19)?

6. ANSWERS

6.1. No Common Common Cause

If we also require that, in addition, the common causes for correlated
pairs of events (A, B), (A, B8), (A8, B), and (A8, B8) coincide,

ZAB 5 ZAB8ZA8B 5 ZA8B8 5 Z

then the answer is no. (For the Proof see http://xxx.lanl.gov/abs/quant-ph/
9806074.)
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6.2 There Exist Common Causes

The smallest algebra capable of representing the EPR events is shown
in Fig. 2. The probabilities of the atoms of the algebra are

p1 5 p(a)p(b8)(q(A) 2 q(AB8))

p2 5 p(a)p(b)(q(A) 2 q(AB))

p3 5 p(a)p(b8)(1 2 q(A) 2 q(B8) 1 q(AB8))

p4 5 p(a)p(b)(1 2 q(A) 2 q(B) 1 q(AB))

p5 5 p(a)p(b8)q(AB8)

p6 5 p(a)p(b)q(AB)

p7 5 p(a8)p(b)(q(B) 2 q(A8B))

p8 5 p(a8)p(b)(1 2 q(A8) 2 q(B) 1 q(A8B))

p9 5 p(a8)p(b)(q(A8) 2 q(A8B))

p10 5 p(a8)p(b8)(q(A8) 2 q(A8B8))

p11 5 p(a8)p(b8)q(A8B8)

p12 5 p(a8)p(b8)(1 2 q(A8) 2 q(B8) 1 q(A8B8))

p13 5 p(a8)p(b8)(q(B8) 2 q(A8B8))

p14 5 p(a)p(b8)(q(B8) 2 q(AB8))

p14 5 p(a)p(b)(q(B) 2 q(AB))

Fig. 2. The Boolean event algebra in which the events of the EPR-Aspect experiment can
be represented.
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p15 5 p(a8)p(b)q(A8B)

Consider now the extension shown in Fig. 3. The common cause events are
represented by the following disjunction of blocks:

ZAB: 1 1 3 1 5 1 7 1 9 1 11 1 13 1 15

ZAB8: 1 1 2 1 5 1 6 1 9 1 10 1 13 1 14

ZA8B: 1 1 2 1 3 1 4 1 9 1 10 1 11 1 12

ZA8B8: 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

The probabilities of the 256 atoms of the extended algebra can be chosen
such that the four common cause events ZAB, ZAB8, ZA8B, ZA8B satisfy all the
required conditions (10)–(19). For the proof see http//:xxx.lanl.gov/abs/quant-
ph/9806074.

Fig. 3. The extension of the algebra shown in Fig. 2.
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7. THE CHARGE OF “WORLD CONSPIRACY” AND
RELATIVITY THEORY

The fact in itself that the measurement choices were taken into consider-
ation (as events in the event algebra) does not necessarily lead to a “world
conspiracy.” The compatibility with relativity theory together with the “no
world conspiracy” requirement means that:

• The left and right measurement choices are independent.
• The outcome on the one side is independent of the measurement

operation on the other side.
• The common cause events are independent of the measurement

operations
• Our model does satisfy all these conditions!

8. SHORTCOMINGS, OPEN QUESTIONS, CONCLUSIONS

• Our common cause model of the EPR-Aspect experiment satisfies
all conditions required in the EPR-Bell literature. In this sense it
resolves the EPR-Bell paradox.

• However, it is not a complete resolution of the paradox because there
is a shortcoming of the model: While it is true that each common
cause event is independent of the measurement choices, it turns out
that such events as

ZAB ∧ ZAB8

ZAB ∨ ZAB8

ZAB ∧ ZAB8 ∧ZA8B

etc.

may be not independent of the measurement operations. It is still an
open question whether there exists a modification of the model in
which the above-mentioned events, too, are statistically independent
of the measurement choices.

• It is still an open question, of course, what kind of physical reality
corresponds to these common cause models.

APPENDIX

Let S be a set of pairs of integers S # {{i, j}. 1 # i # j # n}. Denote
by R(n,S) the liner space of real vectors of form ( f1, f3, . . . , fn , . . . fy , . . .).
For each ε P {0, 1}n, let

›
u ε be the following vector in R(n, S):
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uε
i 5 εl , 1 # i # n

(A1)
uε

ij 5 εiεj , {i, j} P S

The classical correlation polytope C(n,S) is the closed convex hull in R(n, S)
of vectors {

›
u ε}zP(0,1cpn:

C(n, s) :5 H ›
a P R(n, S).

›
a 5 o

zP(0,1)n
lz

›
u z such that lz $ 0 and o lz 5 1J

(A2)

From the definition of the polytope, Equations (A1) and (A2), it follows that
condition

›
p P C(n, S) equivalently means that the probabilities can be

represented as weighted averages of the classical truth values.
In the case n 5 4 and S 5 {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, the condition

›
p P C(n, S) is equivalent to the following Clauser–Horne inequalities:

0 # p(Ai ∧ Aj) # p(Ai) # 1

0 # p(Ai ∧ Aj) # p(Aj) # 1, i 5 1, 2, j 5 3, 4

p(Ai) 1 p(Aj) 2 p (Ai ∧ Aj) # 1

21 # p(A1 ∧ A3) 1 p(A1 ∧ A4) 1 p(A2 ∧ A4) 2 p(A2 ∧ A3) 2 p (A1) 2 p(A4) # 0

21 # p(A2 ∧ A3) 1 p(A2 ∧ A4) 1 p(A1 ∧ A4) 2 p(A1 ∧ A3) 2 p (A2) 2 p(A4) # 0

21 # p(A1 ∧ A4) 1 p(A1 ∧ A3) 1 p(A2 ∧ A3) 2 p(A2 ∧ A4) 2 p (A1) 2 p(A3) # 0

21 # p(A2 ∧ A4) 1 p(A2 ∧ A3) 1 p(A1 ∧ A3) 2 p(A1 ∧ A4) 2 p(A2) 2 p(A3) # 0
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